MEMORANDUM ON THE COMPILATION

OF

MAP OF A PORTION OF

TIBET

Explored by Captain H. H. P. Deasy, 16th Lancers,

IN
1896.

DEHRA DÚN :
printed at the office of the trigonometrical branch, survey of india.
1897.

MEMORANDUM ON THE COMPILATION OF CAPTAIN DEASY'S MAP.

LATITUDES.

The Observed Latitudes have been accepted and used throughout.

LONGITUDES.

CAMP 1. Lat. $34^{\circ} 23^{\prime} 23^{\prime \prime}$, loug. $79^{\circ} 34^{\prime} 28^{\prime \prime}$. The longitude was computed in terms of peak E. 31, (identical with G. T. Tartary No. 1 peak, vide Synoptical Volume VII) and from it the longitudes of S. P. 9 and S. P. 6 were computed by means of Captain Deasy's traverse to the Lamak La.

CAMP 3. Lat. $34^{\circ} 27^{\prime} 3^{\prime \prime}$, long. $79^{\circ} 58^{\prime} 25^{\prime \prime}$. The longitude was first computed in terms of S. P. 11, 12 and 18 which were believed to be ilentical with the G. T. points Mangtza Lake Nos. 3, 2 and 1 , but the three resulting values were $79^{\circ} 56^{\prime} 1^{\prime \prime}$, $79^{\circ} 57^{\prime} 27^{\prime \prime}$, and $79^{\circ} 58^{\prime} 47^{\prime \prime}$.

The Longitude of S. P. 9 was now worked out through the triangle to S. P. 9, using each of these values. That deduced, using the value from S. P. 18 agreed within $6^{\prime \prime}$ with the value of S. P. 9 brought up from camp l, through traverse and triangulation. The value of S. P. 6 similarly worked agreed fairly well. This was taken to prove the ideutity of S. P. 18 with G. T. peak Mangtza Lake No. 1 and the corresponding value of camp 3 was accepted.

All the G. T. points here referred to have been fixed by only 2 rays so their G. T. values cannot be cousidered absolutely reliable.

CAMP II. Lat. $34^{\circ} 35^{\prime} 17^{\prime \prime}$, long. $81^{\circ} 9^{\prime} 22^{\prime \prime}$. The longitude of this camp was computed through S. P. 6 which is fixed by triangles from both camp 3 and camp 1l. The peak is a promineut one and Captain Deasy says there cau be no doubt alout its identification. The peak is, however, ouly fixed ly a siugle triangle so the value is unchecked. S. P. 14 was also tried but proved to be doubtful with a difference of $2^{\prime} 10^{\prime \prime}$ in latitude and $1^{\prime} 33^{\prime \prime}$ in longitude.

As there was no trigonometrical comnection between carop 11 and any of the subsequent camps, a fresh commencement was made at the closing end of Captain Deasy's work.

CAMP 74. Lat. $34^{\circ} 3^{\prime} 43^{\prime \prime}$, long. $79^{\circ} 43^{\prime} 1^{\prime \prime}$. The lougitude was computed from peak E. 32 , which is the same as G. T. Tartary No. 2 peak.

Then from camp 74 the value was carried through peak 256 to camp 67 , but when the latitude of C. 67 thus brought up was compared with its observed latitude a differeuce of $l^{\prime} 38^{\prime \prime}$ was found, so peak 256 was rejected and camp 74 stands by itself, there being no connection with any other camp.

CAMP 63. Lat. $33^{\circ} 59^{\prime} 40^{\prime \prime}$, long. $80^{\circ} 47^{\prime} 51^{\prime \prime}$. The longitude of this camp was computed by means of au azimuth taken to S. P. 6 from the camp which lay well to the south of the peak, and by the difference of latitude of the peak and the camp.

CAMP 67. Lat. $33^{\circ} 54^{\prime} 53^{\prime \prime}$, long. $80^{\circ} 29^{\prime} 44^{\prime \prime}$. The longitude was computed from camp 63 ly azimuths and difference of latitudes through peaks 220,232 and 28 as below:-

The longitudes through peaks 220 and 28 agreed within $37^{\prime \prime}$, so their menin was accepted, the value through peak 232 being discordant was rejected.

COMPUTATION OF CAPTAIN DEASY'S HEIGHTS.

As the G. T. peaks on which Captain Deasy's longitudes have been based have not had their heights determined, it was necessary to obtain a fundamental height barometrically, on which to base the height computations.

Captain Deasy while at Leh read his Mercurial Barometer at Leh station, the height of which is known. He did not however compare his Barometer with that used at the Meteorological observatory there, the records of which for $10 \mathrm{~A} . \mathrm{m}$. and 4 p.m. daily are available. He states lowever that the situation of the Meteorological Instrument was within some 15 or 20 feet in height of Leh Station where he read his Barometer. I have therefore assumed the two points to be identical. The reading of Captain Deasy's Barometer in May was somewhat higher than that of the Meteorological instrument, but on his return journey the readings were almost identical.

I have worked out Captain Deasy's heights differentially with Leh, using his readings and those recorded at Lel.

The Leh records are made at 10 a.m., and 4 p.m., while Captain Deasy on account of the exigencies of marching observed at 7 A.m., and 9 p.m.

No hourly record was kept from which the hourly variation could be ascertained, so an assumed hourly correction was at first applied. As this made the results generally more discordant, and as clearly the changing weather was the greatest element in the irregularities, I finally compared the mean of the readings at each place with the similar mean at Leh.

To determine the fundamental height the procedure has been as follows:-
(1) The heights of all base camps were computed Barometrically, differentially from Leh.
(2) With the Barometrical value of camp 3 as an initial value the heights of camps $63,67,61,57$, 58 and 51 were computed through the triangulation. The heights thus determined in terms of camp 3 were compared with the Barometric heights of these camps and the latter were found lower than the former by various amounts, the average of which was 60 feet. This amount was therefore applied as a correction to the trigonometrical heights. In other words the fundamental height is obtained by taking the mean barometric height of $\boldsymbol{7}$ stations the differences of height of which had been obtained trigonometrically.

The heights were then extended as far as possible trigonometrically, the co-efficient of refraction being taken as 06 .

Such camps as were not connected by triangulation have had their heights detormined direct from the Barometer observations.

The Barometric observations when computed gave as a rule the usual discrepancies inter se of from 30 to 60 feet.

St. G. C. Gore, Lieut.-Colonel, r.e,
Superintendent, Trigonometrical Surveys.

Latitudes, Longitudés, Heights and Magnetic Declination at Captain Deasy's Camps.

Latitudes, Longitudes, Heights and Magnetic Declination at Captain Deasy's Camps-(Continued).

No. of Camp		Date		Latitude by N. Star			Latituda by 8. Star			Mean LatitudeN.			Longitude E.			Height above See Level	Magnetic Declination E.
			896	-	,	"	0	,		-		"	-	,	"	feet	- ,
Camp	56		Sept.	33	44	35	33	44	36	33	44	36				16360	323
"	57					35		47	35		47	35		32		16370	$3 \quad 27$
"	58		Oct.			44		48				47		29	35	16190	326
"	59					26			15690	$3 \quad 32$
"				16360	
	61	5	"		53	3^{8}					53		81	7	8	15610	332
"	62		"			10		53			53					14860	3 3I
"	63	9	"			35		59	45		59		80	47	5I	14850	3 31
"	64		"		55	4		55	12		55			...		16200	330
"	65				48	2		4^{8}						...		16570	328
"	66		"			32			35			34		29		15650	$\begin{array}{ll}3 & 35 \\ 3 & \end{array}$
,	67					48			57		54	53	80	29	44	15170	330
"	68				58	52		58	45		58			...		15390	328
"	69		"		59	58	34	-		34	0			\ldots		15500	326
"	70			34		25		2			2	24		...		16340	334
	71					25		3						...		16820	$3 \mathrm{3I}$
"	72		"			45			42					...		$1743{ }^{\circ}$	335
"	73					37								\cdots		16610	$\begin{array}{ll}3 & 31 \\ 3 & 27\end{array}$
"						42								43	I	16590	

Latitudes, Longitudes and Heights of Peaks fixed from Captain Deasy's Camps.

Name of Station	Latitude N.	Longitude E.	Height above Sea Level	Name of Station	$\begin{aligned} & \text { Latitude } \\ & \text { N. } \end{aligned}$	Longitude E.	Height above Ses Level
	o , "	- ,	feet		- ,	- . 1	feet
CAMP I.				CAMP 43.			
Peak E. 31 (G.T.)	341831	$793^{6} \quad 28$	20950	Peak 132	323412	81 595	18120
Lauak La	2350	$793^{6} 5^{\circ}$	18000	" 133	441	$3^{6} 35$	19140
	J 5			, 134	4217	5052	16750
CAMP 3.				" 135	5410	$3^{1} 5^{8}$	18960
Peak 6	343031	802455	20540	CAMP 49.			
, 9	3340	$79 \quad 529$	20250				
", 11	47 10	802132	21350	Peak 136	32436	$\begin{array}{llll}82 & 8 & 4\end{array}$	17840
", 12	$45 \quad 7$	2319	20960	,, 137	4055	145^{6}	17500
,, 13	47 0	4057	20470	, 140	4521	410	18430
," 14^{2}	5342	8 I	20270	," 141	$\begin{array}{lll}33 & 7 & 38\end{array}$	814917	16870
", 15	446	80406	19380	\% 144	3549	$5^{2} 3^{8}$	20550
" 18 (G.T.)	2653	1721	20150				
, 19	2422	2059	19990	AMP 51.			
, 20	223^{6}	1745	20500	Peak 142	332656	813919	21020
" 22	2125	257	20610	,, 159	2545	4655	19830
" 25	2220	795517	\ldots	„ 163	4638	821759	20820
				", 166	2245	- 55^{8}	19850
CAMP II.				" 168	$3^{8} 52$	$8 \mathrm{I} 443^{8}$	19780
Peak 33	343119	81 11121	19010	" 170	324758	532	20980
" 36	3443	288	20180				
" 39	4657	I 155°	22610	CAMP 57			
", 41	3027	804848	20620	Peak 70	34190	81 443^{8}	20560
" 45	2351	5417	21120	, 184	$\begin{array}{llll}33 & 48 & 42\end{array}$	417	19500
" 46	209	555^{8}	21140	," 185	43 37	1649	20100
" 47	207	$81 \quad 031$	20580	" 187	4353	1147	19780
" 53	$\begin{array}{ccc}35 & 2 & 2\end{array}$	2916	\ldots	, 188	4419	956	19880
" 55	344432	88414	1.7	", 195	$34 \quad 823$	60	20110
, 56	351927	$80 \quad 5822$	23490	" 198	2442	2939	20060
				" 201	33434	33 4I	19600
CAMP 22				, 205	5910	3442	. ${ }^{\text {- }}$
Peak 78	342750	$82 \begin{array}{lll}82 & 28 & 8\end{array}$	18850				
$\prime \prime$	920	8132	20980	CAMP 61.			
$\prime \prime$	1739	81 5744	21090	Peak 213	335542	80409	18370
" 81	2254	373^{8}	20470				
CAMP 27.				CAMP 63.			
Peak 87 ${ }^{\text {a }}$				Peak 212	$\begin{array}{llll}33 & 48 & 13\end{array}$	81 024	19120
Peak 87 ${ }^{\text {a }}$	33 5154	823542	19360	, 220	341943	803430	21000
CAMP 28.				,, 221	1329	3228	18290
Peak 92		$82 \quad 1245$		CAMP 67.			
" 93	$33 \quad 56$	$3^{8} 15$	18930	Peak 28	343027	804511	
CAMP 29.				", 235	2053	1416	20610
Peak 94				" 237	333554	5031	19360
$\begin{array}{cc}\text { Peak } & 94 \\ , \ldots & 95\end{array}$	335845	821650	20100	" 240	$34 \quad 4 \quad 1$	1619	20060
	4859	3719	. ${ }^{\prime}$	"		1853	19830
CAMP				" 2		2111	19340
Peak 89				", 245	1359	$\begin{array}{rrr}26 & 39 \\ 54\end{array}$	20890
" 104	33 41	$\begin{array}{r}82 \\ 38 \\ 38 \\ \hline 1\end{array}$	19010	," 246	$33 \quad 2542$	3312	...
" 105	3955	831310	19840	" 24.7	35 39	2532	19230
" 106	13.58	2658	19180 ?	" 249	18.59	729	
" 107	$46 \quad 27$	- 58	18300	" 250	3959	1955	18800
" 108	1533	2853	20120	" 251	3756	429	19530
" 109	112	2429	20910	256	34549	795045	22120
" 110	1624	52	20480				
,, 116	2754	$82 \quad 1514$	20970	CAMP 74.			
, 117	3622	205	19910	Peak E. 32 (G.T.)	$34 \quad 16 \quad 9$	794052	21560
CAMP 34.				" 269	1440	$3^{8} 2$	21270
Peak 120	$\begin{array}{llll}33 & 25 & 35\end{array}$	$82.50 \quad 3$	17270				
" 122	$\begin{array}{llll}3 & 3^{2} & 48 & 0\end{array}$	$\begin{array}{llll}81 & 57 & 37\end{array}$					
" 123	331945	823310	16900				

Note.-All longitudes are in final G. T. terme and require a correction of $-2^{\prime} 80^{\prime \prime}$ to bring them to the Greenvich terme.

